Differential modes of agonist binding to 5-hydroxytryptamine(2A) serotonin receptors revealed by mutation and molecular modeling of conserved residues in transmembrane region 5.

نویسندگان

  • D A Shapiro
  • K Kristiansen
  • W K Kroeze
  • B L Roth
چکیده

Site-directed mutagenesis and molecular modeling were used to investigate the molecular interactions involved in ligand binding to, and activation of, the rat 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin (5-HT) receptor. Based on previous modeling studies utilizing molecular mechanics energy calculations and molecular dynamics simulations, four sites (S239[5.43], F240[5.44], F243[5.47], and F244[5.48]) in transmembrane region V were selected, each predicted to contribute to agonist and/or antagonist binding. The F243A mutation increased the affinity of (+/-)4-iodo-2, 5-dimethoxyphenylisopropylamine, decreased the binding of alpha-methyl-5HT, N-omega-methyl-5HT, ketanserin, ritanserin, and spiperone and had no effect on the binding of 5-HT and 5-methyl-N, N-dimethyltryptamine. The F240A mutant had no effect on the binding of any of the ligands tested, whereas F244A caused an agonist-specific decrease in binding affinity (3- to 10-fold). S239A caused a 6- to 13-fold decrease in tryptamine-binding affinity and a 5-fold increase in affinity of 4-iodo-2, 5-dimethoxyphenylisopropylamine. A subset of the agonists used in binding studies were used to determine the efficacies and potencies of these mutants to activate phosphoinositide hydrolysis. The F243A and F244A mutations reduced agonist stimulated phosphoinositide hydrolysis, whereas the S239A and F240A mutations had no effect. There was little correlation between agonist binding and second messenger production. Furthermore, molecular dynamics simulations, considering these data, produced ligand-bound structures utilizing substantially different bonding interactions even among structurally similar ligands (differing by as little as one methyl group). Taken together, these results suggest that relatively minor changes in either receptor or ligand structure can produce drastic and unpredictable changes in both binding interactions and 5-HT(2A) receptor activation. Thus, our finding may have major implications for the future and feasibility of receptor structure-based drug design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and interactions analysis of the novel antagonist agent flibanserin with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor as a HSDD treatment in premenopausal women

Flibanserin is a novel antagonist small molecule to treat the hypoactive sexual desire disorder (HSDD) in the premenopausal women. The present article is related to the structural and electronic properties study and docking analysis of the title compound with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor. To access these aims, the molecular structure of the said compound was optimized usin...

متن کامل

Identification of conserved aromatic residues essential for agonist binding and second messenger production at 5-hydroxytryptamine2A receptors.

Several models of agonist binding to G protein-coupled 5-hydroxytryptamine [5-HT] (serotonin) receptors have highlighted the potential importance of highly conserved aromatic residues for ligand binding and agonist efficacy. In this study, we tested these models by constructing and characterizing a number of point mutations of conserved and nonconserved aromatic residues using the 5-HT2A recept...

متن کامل

Probing the role of a conserved M1 proline residue in 5-hydroxytryptamine(3) receptor gating.

A conserved proline residue is found in the first transmembrane domain (M1) of every subunit in the ligand-gated ion channel superfamily. The position of this proline between the N-terminal extracellular agonist binding and the second transmembrane (M2) channel lining domains in the primary sequence suggests its possible involvement in the gating of the receptor. Replacing this proline with ala...

متن کامل

Identification of two serine residues essential for agonist-induced 5-HT2A receptor desensitization.

5-HT(2A) serotonin receptors represent the principal molecular targets for LSD-like hallucinogens and atypical antipsychotic drugs. It has been proposed that a dysregulation of 5-HT(2A) receptor-mediated signaling may contribute to the pathogenesis of schizophrenia and related diseases. A major mechanism for the attenuation of GPCR signaling following agonist activation typically involves the p...

متن کامل

Molecular cloning and functional expression of 5-HT1E-like rat and human 5-hydroxytryptamine receptor genes.

Sequential polymerase chain reaction experiments were performed to amplify a unique sequence representing a guanine nucleotide-binding protein (G-protein)-coupled receptor from rat hypothalamic cDNA. Degenerate oligonucleotides corresponding to conserved amino acids from transmembrane domains III, V, and VI of known receptors [5-HT1A, 5-HT1C, and 5-HT2; 5-HT is serotonin (5-hydroxytryptamine)] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 58 5  شماره 

صفحات  -

تاریخ انتشار 2000